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ON THE THEORY OF REGULAR PIECEWISE-HOMOGENEOUS STRUCTURES WITH 
PIEZOCERAMIC MATRICES* 

O.A. IVANENKO and L.A. FIL'SHTINSKII 

A piecewise-homogeneous medium consisting of a piezoceramic matrix bonded 
by a doubly-periodic system of anisotropic fibres, dielectrics, is 
considered. The electroelasticity boundary value problems occurring here 
reduce to a SystemofFredholm integral equations of the second kind 
whose solvability is prwed. Concepts of mean mechanical and electrical 
quantities are introduced from energy considerations, between which a 
relationship is given by the equations of state of the structure macromodels. 
The algorithm constructed is realized numerically. Results are presented 
of computations of the average elastic, electrical, and piezoelectrical 
properties of the medium as a function of the cell microstructure. 

Models of elastic linearly-reinforced composite materials with 
isotropic and anisotropic components were examined for example, in /l-3/. 
A survey of the results in the area of electroelasticity boundary value 
problems can be found in /4/. 

1. Formulation of the problem. We consider a transversely isotropic piezoelectric 
medium (a crystal of the hexagonal 6 mm system, PZT-4, PET-5, etc. piezoceramic, prepolarized 
along the 2 axis), reinforced by a doubly-periodic system of identical anisotropic fibres 
along the y axis, referred to the crystallographic syz axes. The fibre transverse cross- 
section is a simply-connected domain bounded by a simple closed curve 1 with curvature satisfy- 
ing the Holder condition /5/. The fundamental periods of the structure are denoted by o1 and 

op(Im(o,/w,)>O) the domain occupied by the matrix by D, and 

12 
the domain occupied by the fibre in the unit cell II, by D,. 

For such an idealization in the plane of the transverse 
section we obtain an infinitely connected domain that is 
invariant under the group of translations T(z) = z + p, where 
P is the complex period (Fig.1). We shall assume the mean 
components of the mechanical stress tensor <%>* <%Z)? <a*> 
and the electrical intensity vector <E,), <E,> act in the 
structure. 

We will construct a model of a regular piezoceramic medium 
under the following additional assumptions: a) all fibres have 
identical physicomechanical properties and possess a plane of 
elastic symmetry perpendicular to the y axis; b) conditions 
hold for ideal electrical and mechanical contact between the 

Fig.1 fibre and the matrix. Under these conditions the fields of 
the mechanical stresses, the induction and intensity vectors 

of the electrical field possess the same symmetry group as does the domain D. 
The mechanical and electrical quantities in the matrix are defined by the formulas 
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D r = 2 Re & rkpk@r’ bkh 4 = - 2 Re k; rk@i (zk) 

Here @k (zk) and @k' (zk) = mk (zk)/&k are analytic functions of the complex variable ak 
while the remaining quantities in (1.1) are defined in /6/. 

The mechanical and electric fields in the fibre are not interrelated, they are defined 
by the relationships (the quantities therein are defined in /I, 8/) 

a*=2 Rek+k'(~,), A=elrers--lsa 

E, = 2 Re U',,'(Q), E, = 2 Re Ip&'~'(z~)l 

D, = 2 Re [(E,~ + p&,) 06 (41 

D, = 2 Re [(elr + Y&J %'(zOl 

The conditions for ideal mechanical and electrical contact between the fibres and the 
matrix consist of continuity of the mechanical stress and displacement vectors as well as of 
the tangential component of the electrical field intensity vector and the normal component of 
its induction vector through the interface of the media. By virtue of (1.1) and (1.21, these 
connection conditions have the form 

Alk = pk. Ask = qk, Ask = ykpk, fhl, = Ykr Ask = hkr 
& =Tk (k= k2,3); &k= pk, Bsk = qkr Bkk = pk. 

Blk=Ir Bbk=Bek=O (k=4, 5), 

B16 = Bz6 = B,( = Baa = 0, Bb8 = 1, Bee = -in tk = 

Re t + pr Im t (k = 1, 2, . . ., 6) 

2. Mean values of the mechanical and electrical quantities. It follows from 
the formulation of the problem that the mechanical displacements U, W and the electric field 
potential cp are quasiperiodic functions; consequently, the mean values of the mechanicalstrains 
(.a,), (y,}, <a&, the rigid rotation of the cell (61~) and the electric field intensity <G>, 
<E,> are determined accurately from the relationships 

W=s&>, M-J--h%> + +--&>f<%>) (2.~1 

AN = + ol(<v3 - <oxI>), AN = H <ez> + 

f h (<W - <mm>) 

AI(p = -ml <E,>, A~'P = --h <&> - H <Ez> 

(h = Re 04, H = Im 0,; A,x=x(z+om)-%(z),m=1,2) 

Furthermore, if (X,),(Z,,) are components of the principal mechanical force vector acting 
on some face of the cell, while (0,) is the total electric induction flux vector through this 
face (Fiq.l), the mean values of the mechanical forces <u~,<r~),<u,) and the electric induction 

vector <D.>, <Ok) are naturally introduced as follows 
on the face AB 

<-w = 01 <z,>l <&a> = 01 <a* <&> = 01 <&> (2.2) 
On the face BC 

<&> = I op I (<ax> sin a - <b> co9 a) 

(2,) = I aa I (<G,> sin a - <a,> co9 a), 

<Q,> = I ol I (<4> sin a - <Q> co9 a) 

The internal energy of the unit cell II, can be converted to the form 

(2.3) 
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(2.4) 

Here X,,, Z,,, D,, are components of the mechanical stress vector and the normal component 
of the electric induction vector on the contour of the cell &, and Wvis the internal energy 
density of the unit cell /9/. 

By virtue of (2.2) and (2.3) we obtain finally (F is the area of the unit cell) 

W 0 = + F [<G> <%> + <rx,> <%a> + <er> <a,> + 

<Dx> <&> + CD,> <J&)1 

(2.5) 

The correctness of the mean components introduced for the mechanical and electrical 
quantities follows from the energy equality (2.5). For a unique determination of the states 
of stress and strain in the structure, as well as the electric intensity and induction, it is 
obviously necessary and sufficient to specify any of the following four possible systems of 
mean quantities (1, 3, 5, 7, 9), (1, 3, 5, 8, lo), (2, 4, 6, 7, 9), (2, 4, 6, 8, lo), where 
the numbers correspond to the numerical order of the quantities <El), . . . . (E,) in (2.5). 

3. integral equations the boundary value We represent the 
analytic functions in the 

02 (?k) =& ck (t.k - zk) (t) dtk @k, zk D@’ (k 1, 2.3) (3.1) 
1 

(k=4,5,6) 

Here &(tk - zk) is the Veierstrass zeta function constructed in the periods ark = or, oak = 
h + pkH, Dckl and Dok are affine images of the domains D and D, respectively, ok(t)(k = 1,2, 
3) are the desired functions, and the constants Rk are determined from the conditions for the 
given mean mechanical stresses and the electric field intensity vector to exist in the 
structure. The direction of integration in (3.1) is clockwise. 

The quantities lkj, lkj* are determined from the system 

~ (B,klkj - B,k~) = A,j (n = 1,‘, . . .I 6; f = 1.2,‘) (3.2) 

Subsituting the limit valuesofthe function (1.3) into the boundary conditions (3.11, we 
arrive at the system of integral equations 

2 Re ,f [ Dnjuj (to) + S Gnj (tt to) aj (t) ds] = IP~ (~0, ~0) 
tj=1 

(n=1,2,...,6) ' 

Dnj= 5 Bndkjt Gnj(tv to)= Hnj(t, to) + H$ (t, to) 
k=4 

Hnj (tv to) =& f= B&k (tk - tkO)lkj 2 f 
k=d 

Anj fnP 
F 2ni [tjO$f + b(tj-tjO)])s 

fik = X0 (al4wk - a&k) + '/!@#k 
f;k = - ‘/!&pk + ZO [‘h (aI2 - ‘%4) Ykpk -(@I - dd nkl 

f;k = z,,Ykpk, f;k = O, fi.k = ZOhk 

f;k = x0 (adk~k - h2hk) 

‘p1o = Io [a,, <a,> + % (als - h4) <a,> - aas <&>I + 
20 (W4, <b> + 'I&s <J%)) 

'p1o = zo (%L <TX,> -I- ‘I&S <J&J) + 
zo [‘/a (an - Su) (a,> + alo <uz> - (a31 - did <&>I 

cp*"= -Xo(T,,) + zo(ux), cp4°=xo <%> --o<%z> 

(3.3) 
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cps” = x0 (E,) + zo (E,), cps” = 20 <a.> + - dls) (0;;‘) - 
an (E,)] + zo (d16 (.c,) + are <E,)) (x0=X (a 20)) 

Taking (3.2) into account, it can be shown that system (3.2) is a Fredholm system /lo/. 

4. The uniqueness Theorem. The internal energy density wris apositive-definite 
quadratic form of the components of the mechanical and electrical quantities. For instance, 
we have for PZT-5 piesoceramic 

same 
be a 

WV = 0,03*I0-‘*[(--liu, + 14~7, + 317E,)* + 236~~’ + (4.1) 

49uz* + 133 338E,* + 117 145E,’ + (43~~~ + 526EJ’l 

We consider two solutions of the boundary value problem (1.3) that correspond to the very 
mean quantities (CT,), (r,), (a,), (E,),(E,). The difference between these solutions will again 
solution of this same boundary value problem for 

<'Jzx> = ('c,z) = <U,) = <E,> =<E,) = 0 (4.2) 

By virtue of (2.5) and the positive-definiteness of the internal energy functional, we 
conclude that the homogeneous boundary value problem (1.3) yields zero mechanical stress and 
electrical field intensity fields in each component of the structure. 

We have the following system to determine the functions @a((~~) (k = 1, 2, 3): 

2Rei a,,,$&‘(~~)=6,,~9 (n=1,2,...,6) 
k-1 

alk = Ykpk’, %k = vkpk, a8k = Ykl a4k = hkpk 

ask = xk9 a8k = PkPk - qk 

($2 is the rigid rotation, and 6f is the Kronecker delta). We hence find that 

0: (zk) = 8& (k = 1, 2, 3) 

(4.3) 

(4.4) 
B 

2Re z (Papa -up&-l (n = 1,2, . . ., 6) 
k=l 

Integrating (4.4), we obtain (dkare complex constants) 

=+ (4) = gg,zk + dl, (k = i, 2, 3) (4.5) 

The functions describing the appropriate homogeneous boundary value problem in the fibre 
are found analogously 

@k (zk) = %&?kZk + dk (k = 4, 5, 6); g, = 0 (4.6) 

The connections 

D=Bo, 2flekilA,,kdk =2Re i &,kdk 
k==4 

(n= I,%. ..I 6) 

result from the boundary conditions (1.3). 

5. Solvability of the integral Eqs.(3.3). w e consider the homogeneous system 
corresponding 
relationships 

We shall 
the functions 

Equating 
mean rotation 

to the-system (3.3). 'The equations cp," (zo, 4) = 0 (n = 1, 2, . ._, 6) 
(4.2) are obviously equivalent. 
later ascribe a zero subscript to the solution of the homogeneous 
and functionals corresponding to this solution. 
the functions (3.1) to the corresponding functions from (4.5) and 
of the cell equal to zero, we find 

We introduce the 

RkO = 0, Q = Q, = 0 

following functions into consideration 

+- Xk (zk) = & s ck (tk - zk) ok0 (t) dtk, zk E 0:“’ (k = 1,2,3) 
I 

iek (zk) = & 1 6k (tk -‘k) 2 [lk#J)fl (t) + c$jD(t)] di!k 

j=l 

zk E D”’ (kL4,5,6) 

(4.7) 

and the 

system and all 

setting the 

(5.1) 

(5.2) 

The difference between the limit values of the corresponding functions in (3.1) and (5.2) 
and 1 yields 

ok0 (t) = i& (tk) + dk (k = 1, 2,3) (5.3) 

$ [lkjs?, (t) f &U-(t)] = iek (tk) - dk 
j-1 

(k = 4,5,6) 

It follows from the first equation in (5.3) that ok,,(t) are boundary values of functions 
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regular in D@. 

Eliminating 

Then on the basis of (3.1), (4.7) and (5.1) we obtain 

dr = 0 (k = 1, 2, 1 . .( 6) (5.4) 
the function @m(t) in Eqs.f5.3), we obtain after equivalent reduction 

(5.5) 

tk = Ret+ ~khlt, tEl 

Eqs.(5.5) represent a homogeneous boundary value problem of the type (3.3) for an unbounded 
anisotropic medium with a doubly-periodic system of piesoceramic inclusions. 

By virtue of the uniqneness theorem we obtain 

x,(ik)=~*B,*@ +d,* (k=*,% 3) (5.6) 
i&(zk)= i($-&*&*Zk +d,*) (k=== 4,5,6) 

Comparing the functions &(zk) from (5.6) and (5.2), we arrive at the conclusion that 
the expressions 

P,(t)=iI I&@Jo(~) + C&F)] (k= 435% 6) (5.7) 

are boundary values of functions of the complex variable zt that are regular in the domain &,W. 
Therefore, the representation 

@kO tzk) - &- 

s 

-f$$ (k = 4,5,6); zk E 0;“’ (5.6) 

holds. We introduce the functions 

i&*(z,)= & 
s 

Qk (t)+ 
p 

%-‘k 
(k = 4,5,6); bk E DC” (5.9) 

The difference between thelimitvalues of the functions (5.8) and (5.9) and 1 when Eqs. 
(5.1) and (5.4) are taken into account, gives 

'& (t) = i&+ (t&f (k = 4, 5, 6) (SAO) 
Therefore, the second group of equations in (5.3) can be replaced by the relationships 

(5.10). Eliminating @j*(t) from these relationships exactly as before, we arrive at a 
homogeneous boundary value problem for an anisotropic medium with one piezoceramic inclusion 

2 ~0~~~ d,,&(tk)== 2 Re&B,&*(tk) (n= i;2,...,6) (5.11) 

The functions (5.9) vanish at infinity; consequently, the boundary value problem (5.11) 
has just the trivial solution 

xk (Sk) = 0 @ = 1, 2, 3), e,* (zk) = 0 (k = 4, 5, 6) (5.12) 

Hence, by virtue of (5.3) and (5.4), we conclude that ON(~)= O(k = f,2,3), which it was 
required to prove. 

6. Averaging of a piezoceramic structure. A determination ofthemacromodel of 
a regular structure is given in /ll/. Expressing the mean strains and the mean values of the 
electric intensity vector components in terms of increments of the appropriate quantities by 
means of (2.1), using the quasiperiodicity of these functions, and the static and electrical 
conditions on the sides of the cells (2.2) and (2.31, we obtain the equations of state of the 
macromodel (we omit the angular brackets for brevity) 

The coefficients (S,,}, (d,,), <erj> will, respectively, be called the average compliance, 
piezomoduli, and permittivities. They are functionals determined by certain standard solutions 
of system (3.3). We will not write them here because of their complexity. 

7. Results of calculations. As an example, we consider a composite material with 
the piezoceramic matrix PZT-5 f9/, bonded linearly by fibres of circular transverse cross- 
section of radius R whose centres form a square lattice with spacing 
is a boron epoxy with the parameters bn== 2.5010-""*/Ii, 

er= 2. The fibre material 
blrr = 25.104~ m2/N, bm ==bsl = -0.625~i0"*m2/N, 
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b, = 66.87. lo-” m2/N, b,‘ = b,, = 0, %a = 0, RI= x,, = 4.8.85. W” C2/Nm2. 

Results of computing the average structure parameters are shown in Fig.2. The solid curves 
I-4describe the relative piezoelectric modulus <,&,>I~~* and the quantities (S&ls*~*, t&i>/ 

S,,', (S,*~IW, respectively (the elastic compliances &),<S,,), the piezoelectric modulus (I%,,> 
and the permittivity (Q) are zero). The dashed curves l-3 are constructed for the relative 

permittivities <I?&%*, <a,,)/a,,*,.and the quantity <S,,)/S,C (the 
relative piezoelectric moduli (d&i,* and td,t)ld,,g equal unity) . 
We have introduced the notation 

Sn*=sn-sn~/Su, Sn*"Sn-sl&/Sll 
Sg*=SII-Sn'/Sn, SW*=&,; d,*=du 

&a* = 61 - d&&I, ag’ = a, - 41W~11; 

ell* = Ql, es* - eaa - w/&l 

The authors are grateful to A.M. Kharchenko for their 
help with the numerical realization of the algorithm. 

Fig.2 
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